About this blog

This is where you give the visitor a brief introduction to both this blog and your company. Keep the intro pithy and punchy.

Subscribe to Email Updates

Recent Posts

Posts by Topic

see all


Andy Lechner

Recent Posts

R+W introduces the new CHB belt drive housing for connecting servo and stepper motors to ball and roller screw actuators

Posted by Andy Lechner on Fri, May 26, 2017 @ 12:53 PM

R+W introduces the new CHB belt drive housing for connecting servo and stepper motors to ball and roller screw actuators

 With an increased demand for compact mounting solutions in the automation industry, R+W has released the CHB housing for parallel assemblies of motors and actuators.

 These box housings are available in 5 compact sizes and 2 ratios, allowing for an easier selection process during the design phase, in addition to downsizing of motors. Each unit is machined to order and fits the motor / gearbox and actuator mounting patterns.   The frame is made from solid machined anodized aluminum, offering corrosion protection and robust construction.

 The keyless clamping system inside ensures smooth operation without slippage even during fast reversals. Download the datasheet and find out more about this new mounting solution.

R+W CHB Image-1.png


More details here:



R+W America, L.P.

1120 Tower Ln.

Bensenville, IL 60106

Phone: (630) 521-9911

Fax: (630) 521-0366

Email: Info@rw-america.com

Web: www.rw-america.com


R+W has added LPZ short spacer into its disc coupling product line

Posted by Andy Lechner on Thu, May 18, 2017 @ 09:35 AM


R+W has added LPZ short spacer into its disc coupling product line 

In its effort to fill in and complete its flexible disc coupling offering, R+W has added a standard coupling adapter which provides customers with more configuration and connection options when selecting couplings for industrial applications. 

The LPZ spacer accompanies a quickly expanding product line and offers lateral misalignment capabilities in a very small package. It is available in six sizes ranging from 500 Nm to 12,000 Nm and is able to mate with any LP coupling hub R+W has to offer within the corresponding size. Both ends of this spacer connect via a precision machined stainless steel disc pack, which transfers torque through a pure friction-drive design. This ensures that shear force on the fastening bolts is eliminated and the assembly is completely backlash-free.


While this spacer is made entirely of steel, all R+W coupling components can be made from special materials and balanced for higher speeds if the applications demands it.

More details here:



R+W America, L.P.

1120 Tower Ln.

Bensenville, IL 60106

Phone: (630) 521-9911

Fax: (630) 521-0366

New Call-to-action

Email: Info@rw-america.com

Web: www.rw-america.com

Mounting a Sprocket or Pulley to a Torque Limiter

Posted by Andy Lechner on Wed, May 21, 2014 @ 12:06 PM


Mounting a Sprocket or Pulley to a Torque Limiter

sprocket mounted to torque limiter


As a manufacturer of torque limiters for indirect drives, we are often asked to provide some assistance when it comes to mounting the torque limiter inside a drive sprocket, pulley, or gear.  R+W does offer to provide torque limiters as a complete package, with the drive attachment pre-mounted according to customer specifications, but we are also happy to provide customers with some guidance when it comes to doing this on their own, including providing machining drawings for a do-it-yourself or third party project.  In this article we’ll focus on mounting a roller chain or timing belt sprocket to a torque limiter, as they represent the vast majority of requirements for indirect drive torque limiters.


The process is really straight forward, and can usually be performed in any machine shop with a milling machine and a lathe.  Once the correct torque limiter body size has been selected, based on the required bore diameter and disengagement torque, it must be compared dimensionally with the size of sprocket being used, in order to determine whether it can be mounted directly to the torque limiter, or if it will need to be offset mounted. While a drive sprocket with a smaller diameter than the torque limiter output flange can be offset mounted on a separate bearing, and attached using an adapter plate as needed, it is usually easier and less expensive to choose a sprocket that will fit directly.


load centering over torque limiter


Most quality torque limiters include a bearing (1) between the base of the clutch and the output flange.  This helps to ensure that the driving and driven portions of the torque limiter are properly guided within the rotational axis after disengagement.  In order to protect the bearing from moment loading, the belt or chain tension (2) needs to be well centered over the bearing, unless it will be supported by an external bearing, as is the case in offset mounted systems.  Centering the tension over the bearing in the torque limiter often requires that an additional pocket be machined into the drive attachment, so that the torque limiter can be sunk into drive attachment to a depth that places the bearing underneath the drive medium (i.e. belt or chain).  R+W offers an allowable load centering range, in terms of a distance from the end face of the torque limiter.  This load centering range, dimension “S” from the R+W safety couplings catalog, is the range in which the center of the chain or belt must reside for smooth, sound operation. 


Once the dimensions have been selected, machining the mounting features into the sprocket or pulley is fairly straight-forward. First an inside pilot diameter is bored into the sprocket on a lathe. This bore should be precise to match the centering diameter on the torque limiter output flange.  The centering diameter is referred to as dimension “E” in the R+W safety couplings catalog, and it is the contact surface which ensures that the sprocket will be well centered around the drive axis.  An ISO H7 tolerance is recommended for the pilot diameter, which normally runs between half a thousandth to just under two thousandths of an inch oversized from the nominal diameter, depending on the size, with the larger tolerances applying to larger diameters.  The pilot bore should also be concentric to the pitch diameter of the pulley or sprocket. Lathe jaws with a flat grip for the tips of the sprocket teeth and a machined recess to hold the face plane of the sprocket perpendicular to the axis of rotation allow for a simplified setup. torque limiter dimensions


Next, any relief needed for centering the chain or belt tension over the bearings in the torque limiter is turned into the sprocket’s face.  This diameter must be greater than dimension “G” from the R+W safety couplings catalog, and is less critical than the pilot bore diameter, since it is only for clearance.  It is important however that the sprocket or pulley is square in the lathe chuck, since the turned face in the resulting pocket needs to rest flat against the face of the torque limiter output flange in order for the drive to run smoothly.


Finally, the clearance hole bolt circle is drilled into the sprocket on a milling machine or drill press. The size and number of holes can be taken from dimension “H” in the catalog, and the bolt circle diameter taken from dimension “F” in the catalog.  Using a rotary table makes this process quick and easy. These holes can be counter-sunk or counter-bored to save axial space if installation space is at a premium. 


sprocket with callouts

Once the sprocket or pulley is finished, it is ready to be mounted to the torque limiter output flange.  Inspect the machined surfaces to ensure that they are clean and free of nicks, burrs, and debris.  Slide the drive attachment over the centering pilot on the torque limiter and rotate, while applying gentle pressure, to ensure a proper fit.  Little to no relative movement between the drive sprocket or pulley and the torque limiter output flange should be possible, aside from rotation.  Insert the mounting screws and ensure that they are finger-tight.  Evenly tighten the screws in a crosswise pattern, applying 1/3, 2/3, and finally 3/3 of the recommended tightening torque for the size and type of screw being used.  




sprocket mounted on torque limiter

The drive attachment is now machined and properly mounted, and is ready for installation. 
As always, don’t hesitate to contact your coupling experts with questions about proper sizing, selection, and handling of torque limiters and safety couplings


 Video Demonstration of Safety Couplings

Tags: torque overload, ball detent torque limiter, torque limiter mounting, ball detent coupling, flange for torque limiter, torque limiting sprocket, torque test coupling, adjustable coupling, servo torque limiter, safety couplings, ball detent clutch, torque limiter, mounting torque limiter, safety coupling output flange

R+W Assumes a New Position on Metallic Couplings

Posted by Andy Lechner on Fri, Jul 19, 2013 @ 10:29 AM




The concept of fatigue resistance in flexible shaft coupling design has been highly valued by R+W since its inception in 1990.  For much of its first two decades in business the company focus was almost exclusively on couplings for high performance servo drive technology.  When it comes to machinery that utilizes this type of equipment, professionals at all levels know that shut down for maintenance can be extremely costly, and that unplanned downtime can have catastrophic effects on the profitability of a process.  When properly applied, the flexible bellows coupling addresses this and a great number of other concerns in support of high speed, high accuracy machinery.  In addition to fatigue resistance it offers the benefits of high torsional stiffness, low moment of inertia, and continuous symmetry, all of which lend themselves very well to motion systems involving rapid indexing and high precision positioning – essentially making it the first choice for servo drives.  For many years R+W has been well known as a leader in bellows coupling technology.  But as the company has continued to grow and add couplings for higher powered industrial drives to its portfolio, the need for a different type of fatigue resistant metallic coupling has become apparent.  In 2013 R+W is introducing its SURVIVOR series of flexible disc pack couplings.  Not to be confused with a servo coupling, the flexible disc pack coupling is ideally suited for many of the most demanding industrial power transmission systems made.  

 disc packbellows servo coupling










Material fatigue results from a certain number of stress cycles at a certain stress amplitude.  In a flexible coupling this essentially means the number of shaft rotations at certain levels of misalignment and torque.  In the case of ferrous materials, when the stress amplitude is known and kept below the fatigue limits of the flexible element in the coupling (i.e. the misalignment and torque ratings), any number of cycles can be tolerated without fatigue.  The goal is infinite life for the product.   More than just servo driven machinery demands reliable performance.  Engineers in the petrochemical, power generation, steel and paper industries, to name a few, might consider that to be a laughable statement, and might also agree that reliable operation of their equipment is more critical today than ever.  Designed to protect drive shafting, bearings and gears from stress related to misalignment and structural changes, a flexible shaft coupling is necessarily subject to a very large number of bending cycles in its life.  More traditional designs require either periodic lubrication or replacement of wear parts in order to help relieve this kind of stress.  But this kind of frequent maintenance is simply unacceptable in some critical installations.  Metallic flexible couplings are a category which is typically designed with the intent to fully eliminate wear, based on the principle of fatigue resistance. 

R+W has been applying this concept to maintenance free bellows couplings for many years on its mission to deliver efficiency through coupling design.  While the metal bellows coupling is often scaled up into the megawatt drive power ranges for applications which demand its specific characteristics, many industrial drive applications do not involve the dynamic motion profiles of servo systems, and tend more toward continuous forward rotation.  In this category, as loads become larger and drivelines more power dense, a different set of shaft coupling characteristics can come into focus as being more suitable.  With this in mind, R+W is proud to present its LP-SURVIVOR series, for demanding industrial power transmission applications.


exploded view


There are some distinct features of the R+W version of the steel disc pack coupling, the most notable of which makes further advancements toward the goal of infinite service life.  R+W SURVIVOR series couplings transmit torque across the disc pack assemblies purely by friction.  A series of bushings are pressed together by R+W to assemble the disc packs, while precision locating features in the hubs and spacers present a concentric fit.  The bolt assemblies are then tightened through the hubs, spacers and bushings to generate the necessary clamping pressure across the faces of the disc packs to transmit all of the power by friction.  This purely backlash free friction fit serves to eliminate problems associated with stress concentration, backlash, and micro-movements, all of which can result from transmitting torque across the shanks of shoulder bolts. The frictional connection of the disc packs further increases service life, in addition to making the complete coupling assembly more torsionally stiff.

The first generation of LP-SURVIVOR series couplings consists of both single and double flex versions to mount by keyway and set screw (LP1+LP2), a double flex version with precision conical clamping ring assemblies (LP3), and a special API 610 version (LPA) which meets all of the stringent requirements for critical centrifugal pumping applications.  Two standard spacer lengths are available for each double flex version, with full customization of dimensions and materials available, depending on the specific application requirements. As with all R+W couplings, the LP couplings are available with either imperial or metric bore diameters ranging from 18 to170mm (~3/4” to 6-5/8”) and with torque capacities ranging up to 20,000Nm (177,000 in*lbs). 

Whatever the requirements may be, an R+W coupling expert is available to help in the sizing, selecting and customization of the ideal high performance shaft coupling for your requirements.  For more information on R+W’s new line of disc pack couplings, please visit our website at www.rw-america.com, or call us at (888)479-8728 to speak with a coupling specialist today.

Survivor Series Disc Pack Coupling Catalog

Tags: disc pack coupling, lamina coupling, API 610 coupling, steel disc coupling

Solving Problems with Torsionally Stiff Couplings

Posted by Andy Lechner on Wed, May 22, 2013 @ 17:08 PM



One of our customers in Michigan has a short application story we'd like to share with you.  It provides a great example of how precision bellows couplings can help solve machine performance problems.


 Bellows Coupling White Paper


 MICHIGAN CUSTOM MACHINES, NOVI, MI (http://www.michigancustommachines.com/)

Engineer: Brian Nugent

"Michigan Custom Machines builds end of line functional test machines, primarily for the diesel and automotive industries.  This particular application required a 400 lb flywheel to mimic the inertia of a diesel engine driveline.  The flywheel was mounted to a shaft that needed to be coupled to a custom camshaft which is actuating a fuel injector.  

mcm photo

One of the biggest challenges on this application was stiffness of the coupling.  We have history with this application and have found if the coupling has wind up, even though it is zero backlash, it will affect how the test is performed by allowing the instantaneous rpm to droop momentarily within part of a revolution.

For this application I called (R+W) direct, also passed information back and forth through e-mail to him.  Prior to this application I have always known who R+W was, mainly through word of mouth within the custom test machine community and the internet.

We used a Model BK1/6000/XX.  It was a custom model - the adapters were custom to fit the different shaft sizes and the shaft locks we used.

It was known when sizing this coupling, the BK1/6000/XX could not handle as much torque as a previous disc type coupling used, but the stiffness was higher.  After installing the BK1/6000/XX, an instrument was used to see how much phase change is seen during operation from one side of the coupling to the other.  The BK1/6000/XX showed 1/3 of the phase difference or wind up compared to the previous couplings used.  This resulted in more consistent testing of the fuel injector.”





Normally for this 6,000 Nm application we would have worked with our BK3/6000 shaft coupling, but it became clear as we were checking the fits that a special solution would be needed in order to accomodate existing space restrictions.  So it was decided that this solution would be based instead on our BK1/6000 basic bellows coupling. One of many custom mounting arrangements we work with here at R+W is to insert special flanges inside the bellows so that keyless locking devices can be used without extending the coupling length.  Flat head cap screws allow us to maintain a low profile while still maintaining the structural integrity needed for high torque transmission.

If you have a difficult shaft coupling application you'd like some help with, don't hesitate to contact our applications engineering group at applications@rw-america.com. 



 Bellows Coupling White Paper

Tags: test stand coupling, torsional stiffness, torsionally stiff coupling, coupling torsional stiffness, torsional rigidity, drive couplings, bellows coupling, torsion resistance, torsion resistant coupling, torque test coupling, torque sensor coupling