About this blog

This is where you give the visitor a brief introduction to both this blog and your company. Keep the intro pithy and punchy.

Subscribe to Email Updates

Recent Posts

Posts by Topic

see all

Blog

Mounting a Sprocket or Pulley to a Torque Limiter

Posted by Andy Lechner on Wed, May 21, 2014 @ 12:06 PM

 

Mounting a Sprocket or Pulley to a Torque Limiter

sprocket mounted to torque limiter

 

As a manufacturer of torque limiters for indirect drives, we are often asked to provide some assistance when it comes to mounting the torque limiter inside a drive sprocket, pulley, or gear.  R+W does offer to provide torque limiters as a complete package, with the drive attachment pre-mounted according to customer specifications, but we are also happy to provide customers with some guidance when it comes to doing this on their own, including providing machining drawings for a do-it-yourself or third party project.  In this article we’ll focus on mounting a roller chain or timing belt sprocket to a torque limiter, as they represent the vast majority of requirements for indirect drive torque limiters.

 

The process is really straight forward, and can usually be performed in any machine shop with a milling machine and a lathe.  Once the correct torque limiter body size has been selected, based on the required bore diameter and disengagement torque, it must be compared dimensionally with the size of sprocket being used, in order to determine whether it can be mounted directly to the torque limiter, or if it will need to be offset mounted. While a drive sprocket with a smaller diameter than the torque limiter output flange can be offset mounted on a separate bearing, and attached using an adapter plate as needed, it is usually easier and less expensive to choose a sprocket that will fit directly.

 

load centering over torque limiter

 

Most quality torque limiters include a bearing (1) between the base of the clutch and the output flange.  This helps to ensure that the driving and driven portions of the torque limiter are properly guided within the rotational axis after disengagement.  In order to protect the bearing from moment loading, the belt or chain tension (2) needs to be well centered over the bearing, unless it will be supported by an external bearing, as is the case in offset mounted systems.  Centering the tension over the bearing in the torque limiter often requires that an additional pocket be machined into the drive attachment, so that the torque limiter can be sunk into drive attachment to a depth that places the bearing underneath the drive medium (i.e. belt or chain).  R+W offers an allowable load centering range, in terms of a distance from the end face of the torque limiter.  This load centering range, dimension “S” from the R+W safety couplings catalog, is the range in which the center of the chain or belt must reside for smooth, sound operation. 

 

Once the dimensions have been selected, machining the mounting features into the sprocket or pulley is fairly straight-forward. First an inside pilot diameter is bored into the sprocket on a lathe. This bore should be precise to match the centering diameter on the torque limiter output flange.  The centering diameter is referred to as dimension “E” in the R+W safety couplings catalog, and it is the contact surface which ensures that the sprocket will be well centered around the drive axis.  An ISO H7 tolerance is recommended for the pilot diameter, which normally runs between half a thousandth to just under two thousandths of an inch oversized from the nominal diameter, depending on the size, with the larger tolerances applying to larger diameters.  The pilot bore should also be concentric to the pitch diameter of the pulley or sprocket. Lathe jaws with a flat grip for the tips of the sprocket teeth and a machined recess to hold the face plane of the sprocket perpendicular to the axis of rotation allow for a simplified setup. torque limiter dimensions

 

Next, any relief needed for centering the chain or belt tension over the bearings in the torque limiter is turned into the sprocket’s face.  This diameter must be greater than dimension “G” from the R+W safety couplings catalog, and is less critical than the pilot bore diameter, since it is only for clearance.  It is important however that the sprocket or pulley is square in the lathe chuck, since the turned face in the resulting pocket needs to rest flat against the face of the torque limiter output flange in order for the drive to run smoothly.

 

Finally, the clearance hole bolt circle is drilled into the sprocket on a milling machine or drill press. The size and number of holes can be taken from dimension “H” in the catalog, and the bolt circle diameter taken from dimension “F” in the catalog.  Using a rotary table makes this process quick and easy. These holes can be counter-sunk or counter-bored to save axial space if installation space is at a premium. 

 

sprocket with callouts

Once the sprocket or pulley is finished, it is ready to be mounted to the torque limiter output flange.  Inspect the machined surfaces to ensure that they are clean and free of nicks, burrs, and debris.  Slide the drive attachment over the centering pilot on the torque limiter and rotate, while applying gentle pressure, to ensure a proper fit.  Little to no relative movement between the drive sprocket or pulley and the torque limiter output flange should be possible, aside from rotation.  Insert the mounting screws and ensure that they are finger-tight.  Evenly tighten the screws in a crosswise pattern, applying 1/3, 2/3, and finally 3/3 of the recommended tightening torque for the size and type of screw being used.  

 

 

 

sprocket mounted on torque limiter

The drive attachment is now machined and properly mounted, and is ready for installation. 
As always, don’t hesitate to contact your coupling experts with questions about proper sizing, selection, and handling of torque limiters and safety couplings

 

 Video Demonstration of Safety Couplings

Tags: torque overload, ball detent torque limiter, torque limiter mounting, ball detent coupling, flange for torque limiter, torque limiting sprocket, torque test coupling, adjustable coupling, servo torque limiter, safety couplings, ball detent clutch, torque limiter, mounting torque limiter, safety coupling output flange

Taking Advantage of Coupling Configurability

Posted by Niilo Nykanen on Thu, May 30, 2013 @ 16:05 PM

 Bellows Coupling White Paper

 

Configurable coupling systems save time and money

Many machine builders are well aware of the advantages of using configurable components in the design stages. As projects progress, specifications often change and builders must adapt components to fit new constraints. Drive and electrical components must be flexible to adapt to new operating parameters or machine chassis dimensions. Electrical designers often make use of DIN rail mounted devices which can be interchanged quickly on the production floor or in the field. Circuit breakers, fuses, and power supplies can be easily changed out in the event that a different motor or sensor is installed. From the mechanical perspective it is usually coupling elements which need to be changed to adapt to new dimensions.  This is why QD or similar bushings are typically used with V-Belt sheaves.  If drive speeds change, a fairly quick sheave swap is all that is required. If a new gearbox or actuator needs to be installed, drive couplings in various lengths and bore diameters are often required in order to help get everything tied together.  Finding direct drive couplings with compact dimensions and creative mounting configurations is normally fairly easy.  But in some cases layout changes involve longer distances between mechanically connected equipment, requiring something a little more specialized.

 

BELT DRIVE

 

 Belt drive or direct drive

With longer distances between rotating components, designers are often in a position to choose between belt or chain driving, and using a direct drive line shaft system.  A direct drive line shaft coupling typically provides for stiffer power transmission than belts, which can be especially advantageous in applications that require precision timing and positioning or frequent changes in rotational direction. Line shaft couplings are also low maintenance compared with belts which need to be changed at regular intervals, just like car tires for optimal performance. But in the past there were occasionally major drawbacks to using direct drive line shafts over belts in some applications.  Assembly with steel shafting and standard couplings generally requires intermediate support bearings and is not very well suited to higher drive speeds over long distances.  Most preassembled torque tube styles of line shaft couplings are also built to order rather than being stocked by many large industrial supply companies. In the past a typical prefabricated torque tube style line shaft would need to be rebuilt if length or shaft sizes changed. 

 

old style line shaft

 

New configurable line shaft couplings

In more recent years, prefabricated, variable length, telescoping line shaft couplings have been brought to the industrial market in order to address the growing trend toward designing with direct drives. A variable length line shaft with removable hubs solves the issue of shaft sizes and lengths changing (within adjustment range) as a machine is built or upgraded. With a variable length line shaft, the overall length can be changed in minutes by simply loosening and tightening a couple of machine screws. Jaw style hubs or flange mounted bellows coupling hubs can be swapped out with stock parts in less time than it takes to change a v-belt sheave and re-tension belts. Additionally, common size adjustable line shaft couplings are stocked by many distributors and ready to ship with hubs just like sheaves and belts.

 

Adjustable Line Shaft Coupling

 

This new take on configurable coupling component technology ultimately saves cost in labor and/or materials over time. While newer components produced in smaller quantity can have higher pricing up front, they can actually lower the cost of maintenance and overhaul down the road. Making use of a more precision product can also help to increase the rate at which a product is manufactured. As we all know, increased productivity and lower service costs ultimately decrease the time over which a return on initial investment is seen. This makes money for our employers, which is something I’ve found they enjoy universally.  

 

Bellows Coupling White Paper

Tags: spacer couplings, line shaft, telescoping shaft, jack shaft, drive shaft, line shaft coupling, adjustable coupling, torque tube